Descent Lecture 2 (autumn 2018)
Locally Weighted \u0026 Logistic Regression | Stanford CS229: Machine Learning - Lecture 3 (Autumn 2018)
1:19:34
Advanced Algorithms (COMPSCI 224), Lecture 1
1:28:19
Machine Learning Lecture 12 \"Gradient Descent / Newton's Method\" -Cornell CS4780 SP17
49:19
Lecture 11 - Introduction to Neural Networks | Stanford CS229: Machine Learning (Autumn 2018)
1:20:14
Machine Learning | Gradient Descent (with Mathematical Derivations)
29:12
Lecture 13 - Debugging ML Models and Error Analysis | Stanford CS229: Machine Learning (Autumn 2018)
1:18:55
Stanford CS229 I Weighted Least Squares, Logistic regression, Newton's Method I 2022 I Lecture 3
1:12:59
Lecture 1 | The Perceptron - History, Discovery, and Theory
1:09:13
Stanford EE364A Convex Optimization I Stephen Boyd I 2023 I Lecture 2
1:20:23
Lecture 16 - Independent Component Analysis \u0026 RL | Stanford CS229: Machine Learning (Autumn 2018)
1:18:10
Gradient Descent From Scratch in Python - Visual Explanation
28:44
Gradient Descent Stanford University Coursera
11:31
3.4 First-Order Gradient Descent Methods
15:50
Lecture 4 - Perceptron \u0026 Generalized Linear Model | Stanford CS229: Machine Learning (Autumn 2018)
1:22:02
Deep Learning Lecture 4.2 - Gradient Descent
28:13
STOCHASTIC Gradient Descent (in 3 minutes)
3:34
Generalized Gradient Descent Equation [Machine Learning Tutorial]
4:21
Gradient Descent in 3 minutes
3:06
[DSCI 572] Stochastic gradient descent
1:07:41
2.1.4 Gradient Descent in Practice II Learning Rate by Andrew Ng
8:59
EP8: Normal Equation vs Gradient Descent
1:46
Recent searches